Robustness of Microarchitecture
Attacks/Malware Detection Tools against Adversarial

Artificial Intelligence Attacks
Group: 16
Shi Yong Goh , Connor McLoud, Felipe Bautista Salamanca, Kevin Lin,
I 1am Anderson. Eduardo Robles

Introduction Methodology

O Malware exploiting underlying hardware implementation, or Step 1: Learn attack codes for insight into limits
microarchitecture attacks, are tough to detect with traditional and requirements
anti-malware solutions. O Each microarchitecture attack has its own structure

O One detection method involves using an Al to monitor CPU power and set of instructions that can’t be altered.
consumption for malicious patterns of energy consumption called O A deep understanding of the attack is crucial so noise
power signatures [1]. (x86 instructions) can be inserted in optimal positions.

p&”) Step 2: Create scripts and configure systems for
—> efficient data collection/analysis
/\/\/W/\/\ O Configure servers for diverse operations.
Running O A program that can efficiently interact with these

Program e > Hs) machines to collect and analyze data is necessary for

Power Signature
_ _ _ both the backend side of the project for further
O Detection systems need to be resistant to evasive malware that experiments and research.

uses adversarial examples to alter power consumption

patterns and evade detection. Step 3: Implement user interface
O A graphical user interface built on top of the underlying
\ A systems provides a user-friendly way to launch tests
—SE No and view the results in a convenient format.
ZIAMA T — Detection o _ _
e . 1) Detection Step 4: Profile instruction’s power consumption
ML Model -

nsert attack and changes on power sighatures
noise d We must find out how each x86 instruction affects the
power consumption so we can freely manipulate the
power signature with precise noise.
It requires research and experimentation to
understand how instructions correlate to the power
sighature.

p (MA)

O We want to design software that will test these system’s
robustness with adversarial examples. 0

Overview

A Our software will help automate the current manual process of _
assessing the robustness of malware detection systems. Im plementat")n

[Features a simple and user-friendly graphical user interface

A It can be used by researchers or developers to efficiently The GUI is implemented using python and PyQt6 GUI
generate adversarial examples and test the robustness of their Framework. As well as internal logic on the local
detection system. machine

The backend logic uses SSH to establish

Inputs f— communication channels with the machine learning

Detection : (ML) and power signature server to collect and
ML Model Detection

Attack certainty gg;gr analyze data
Sé):(l;c;e @ Aok | | signature The servers are configured with Bash scripts that
statistic provide the following functionality

1) Test an attack's ability to fool the ML model
Our Teams Software 2) Collect statistics about an attack
3) Profile an instruction's power consumption
Instruction Insertion Logic p (mA)

A °® ul Results

—> EXE —> >

Instruction's . Style: | macOS % @ Use style's standard palette Spectre_Attack_0425-210259 Results
power Detection

signature Adversarial > ML Model
dataset Example Attack Type

Test loss: 0.21600131690502167
Test accuracy: 0.B666666746139526
Use Default Parameters N [s=============================] - ETA: 0s
Attack Source Code File Number of Runs '|f'| [::::::::::::::: = ———— :::] =0s 13?”’15:5‘3;}

Results and Impact :

o [[9.99974847e-01 2.51559468e-05]
Source.c Wait Time Between Runs [9.99894023e-011.056927276e-04]

D ACI |ieved an ol | i| |a| Oal tO Cl eate a t|| | |e'e| I iCiE| |t adve| SAal |a| 5 %gggggzgﬁj—g?':123325??1%?6%?]
g g
[3.08041126e-01 6.91958304e-01]

example that can fool the ML model. Hpioad R Atask [7:16581821e-01 2.83418208e-01]

[9.99895470e-01 4.58004342e-06]

O Progressed an instruction power signature dataset with data on e et e e e
over 140 x86 instructions. R [9.637367526.02 9.046263106.01
Developed automation systems for fast testing and data R
collecting.

Developed a GUI and Python environment that enables user-
friendly model testing with attack codes.

Work serves as a foundation for future teams.

Local Machine

Backend
Instruction Time (ms) Instructions (M) Avg. Power # Power Values| Inst. / ms (K) Logic

addirlé 458.31 450 7400.04 3917 981.86

add ir32 223.73 450 8493.38 1644 2011.33

add i r64 267.95 450, 8828.76 1923 1679.41

dec r64 136.29 450 7656.22 1162 3301.88 Collected

cmp iréd 272.54 8616.44 1967 1651.16 Data

imul i r64 r64 274.20 450 8760.30 2008 1641.11

mulx r32 r32 m 241.22 8382.29 2415 3979.69

mov r64 m 231.46 6878.65

mov r64 rbd 259.51 7791.87

prefetchw 807.28 7479.29

rdtsc 898.44 8112.16

sleep 1001.32 6081.71

spectre 807.91 5939.56

Conclusion

 UI successfully automated the old system that
enabled users to test adversarial examples on the
w [detection ML model.

 Manually created adversarial examples that exposed

M‘ i security vulnerabilities in the ML model.

 Advanced the effort towards comprehensively
understanding the effects of x86 instructions on
power signhatures.

O Established groundwork for future team progress.

M w‘ [‘wm '“m h m /) gt \Vy.' | ‘”"““w ‘ H

